Question	Answer		Mark
1(a)(i)	Tension line and arrow correctly drawn and labelled Weight line and arrow correctly drawn and labelled	(1) (1)	2
	(Upthrust) Tension/ <i>T</i> / pull of kite on surfer		
	(Drag)		
	Weight/W/mg		
	(Tension can be on either side. If 2 marks have been awarded subtract 1 mark if the drag has been included and is not a horizontal force opposing the tension)		
1(a)(ii)	Use of correct trig function to find horizontal component of the tension $T_{\text{horizontal}} = 840 \text{ (N)}$	(1) (1)	2
	Example of calculation Horizontal component of tension = $T\cos\theta$ $T_{\text{horizontal}} = 1100 \text{ N} \times \cos 40^{\circ}$ $T_{\text{horizontal}} = 843 \text{ N}$		
1(a)(iii)	$T_{\text{vertical}} = 1100 \sin 40^{\circ} \text{ Or } T_{\text{vertical}} = 707 \text{ (N) seen}$	(1)	
	Use of $W = mg$	(1)	
	Use of $mg = U + T_{\text{vertical}}$ with a sensible statement discussing what would happen if $T_{\text{vertical}} = W$ Or $T_{\text{vertical}} >$ weight Or $T_{\text{vertical}} <$ weight	(1)	3
	e.g. $T_{\text{vertical}} = W \text{ Or mass} = 72 \text{ kg: Upthrust is zero}$ $T_{\text{vertical}} > \text{weight Or mass} < 72 \text{ kg: Can't have a negative upthrust}$ $T_{\text{vertical}} < \text{weight Or mass} > 72 \text{ kg} : \text{To provide some upthrust}$		
	Example of calculation $T_{\text{vertical}} = T \sin 40^\circ (= 707 \text{ N}) \text{ OR } mg = U + T_{\text{vertical}}$ mg = U + 707 N $\text{mass} = \frac{707 \text{ N}}{9.81 \text{ N kg}^{-1}} = 72.1 \text{ kg}$		

	Total for question		11
	Power transferred to surfer= $\frac{\text{work done}}{\text{time}}$ has increased hence the power increases Or more work done per second on the surfer so the power increases	(1)	4
	Work done increases	(1)	
	As the angle to the horizontal (θ) decreases Or As the angle to the vertical (θ) decreases $\rightarrow T \cos \theta$ increases Or the forwards force on the surfer increases Or the smallest θ gives the maximum/greatest force	(1)	
	Max 3 The horizontal component of the tension in the line produces the forward force acting on the surfer Or horizontal component of tension = $T\cos\theta$ (accept $T_{\text{horizontal}} = 1100\cos\theta$)	(1)	
	c	(1)	
*1(b)	(QWC – work must be clear and organised in a logical manner using		

Question Number	Acceptable Answers	Mark	ζ
2(a)(i)	Use of $E_{\text{grav}} = mgh$ (1) $E_{\text{grav}} = 48 \times 10^3 \text{ J}$ (1) <u>Example of calculation</u> Work done = 810 kg × 9.81 N kg ⁻¹ × 6.0 m Work done = 47 700 (J)	2	

Question Number	Acceptable Answers		Mark
2(a)(ii)	(useful) energy transferred = $0.4 \times \text{total energy transferred}$	(1)	
	Use of work done against resistive forces of the ground = $F\Delta s$	(1)	
	Force = $9.5 / 9.6 \times 10^4$ N (ecf) (ignore any -)	(1)	3
	(It is possible to calculate v from K.E., then a and use $F = m a$)		
	Example of calculation		
	Useful energy transferred from driver $=\frac{40}{100} \times 47\ 700\ \text{J} = 19\ 100\ \text{J}$		
	Resistive force = $\frac{19100 \text{ J}}{0.20 \text{ m}} = 9.6 \times 10^4 \text{ N}$		

Question	Acceptable Answers	Mark
Number		
2(b)(i)	Use of Stress = $\frac{\text{force}}{\text{area}}$ Or Use of Strain = $\frac{\text{extension}}{\text{original length}}$ (1)	
	Correctly use $E = \frac{\text{stress}}{\text{strain}}$ with $E = 120 \ (\times \ 10^6)$, $F = 7(\times \ 10^5)$, $x = 0.4$ correctly substituted (1)	
	(Use of $E = (F \times x) / (A \times \Delta x)$ scores MP1 for quoting formula and MP2 for 'use of')	
	$\Delta x = 0.008(3) \text{ (m)} $ (1)	3
PhysicsAr	Example of calculation $\sigma = \frac{7.0 \times 10^5 \text{ N}}{\pi \times (0.30 \text{ m})^2} = 2.48 \times 10^6 \text{ Pa}$ $\varepsilon = \frac{\Delta x}{0.40 \text{ m}}$ $\Delta x = \frac{2.48 \times 10^6 \text{ Pa} \times 0.40 \text{ m}}{120 \times 10^6 \text{ Pa}}$ $\sigma Ma(trs:Tipterssion) = 0.0083 \text{ (m)}$	

Question	Acceptable Answers	Mark
Number		
2(b)(ii)	Use of $E_{el} = \frac{1}{2}F\Delta x$ (1)	
	Energy stored = 2.8×10^3 J or 2.9×10^3 J (ecf) (1)	2
	Example of calculation $E_{el} = \frac{1}{2} \times 7.0 \times 10^5 \text{ N} \times 0.0083 \text{ m}$ $E_{el} = 2.9 \times 10^3 \text{ J}$	

Question Number	Acceptable Answers	Mark
*2(b)(iii)1.	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)[Only apply if both 1. and 2. get full marks]Graph: Permanent/plastic compression/deformation Or does not return to its original length/shape(1)	
	Effect: Becomes too thin Or will not compress Or no longer elastic Or becomes brittle(1)	2

Question	Acceptable Answers	Mark
Number		
*2(b)(iii)2.	More work done in loading than unloading the wood Or more energy is absorbed/stored than released	
	Or the area between the lines shows energy is dissipated Or the area while applying the force > the area while releasing Or (the area in) the hysteresis loop shows energy is dissipated (1) (these should be marked if written in 1. above)	1
	Total for question	13

Question	Answer		Mark
Number 3 (a)	Same (downwards) acceleration Or acceleration $-a$	(1)	1
5 (u)	(accept constant acceleration)	(1)	1
3 (b)(i)	The ball is in contact with the floor (accept the ball bounces)	(1)	1
3 (b) (ii)	Lower gradient Or the lines would be not be as steep	(1)	1
3 (c)	Use of equation(s) of motion to find <i>s</i> Or use of distance = area under the graph Or use of GPE = KE s = 1.1 m - 1.4 m <u>Example of calculation</u> $(4.7 \text{ m s}^{-1})^2 = (0 \text{ m s}^{-1})^2 + (2 \times 9.81 \text{ m s}^{-2} \times s)$ s = 1.13 m	(1) (1)	2
3(d)(i)	Use of KE = $\frac{1}{2} mv^2$ KE = 1.1 - 1.3 (J) (no ue) Example of calculation KE = $\frac{1}{2} \times 0.40$ kg × (2.4 m s ⁻¹) ² = 1.15 J	(1) (1)	2
3(d)(ii)	Use of GPE = KE h = 0.27 m - 0.32 m (ecf from 16(d)(i)) (If area under graph or an equation of motion is used e.g. $h = \frac{(u+v)t}{2}$ or $v^2 = u^2 + 2as$ only MP2 can be scored) Example of calculation $h = \frac{1.2 \text{ J}}{0.4 \text{ kg} \times 9.81 \text{ Nkg}^{-1}}$ h = 0.31 m	(1) (1)	2
3(e)	(Elastic potential) energy transferred to thermal energy Or energy dissipated as heat	(1)	1
	Total for question		10

Question			Mark
Number			
4(a)	(The line) AB (extended)does not pass through the origin /initially		
	Or the graph is curved as it passes through the origin		
	Or the graph (before A) is not a straight line through the origin.	(1)	
	The device does not obey Hooke's law (conditional mark)	(1)	2
4(b) (i)	Reference to finding area	(1)	
	Detail		
	count squares		
	OR approximate the shape of the graph to a triangle		
	Or reference to using a trapezium(could be described as		
	rectangles and triangles)	(1)	2
4 (b) (ii)	Identifies that force is the problem.	(1)	
	Explains why force used is an overestimate		
	e.g. maximum force has been used (each time)		
	Or average force was not used (each time)		
	Or the force is changing (continuously)		
	Or should have used the trapezium rule	(1)	2
	Or area of rectangle has been used	(1)	2
4(c)	Use of 25% of 540 kJ i.e. find the energy to be used	(1)	
	Use of total available energy (either 540 000 J or 135 000 J)		
	energy per stretch or energy per unit time	(1)	
	Time = 612 min	(1)	2
		(1)	3
	Example of calculation		
	540 000 J x 25% = 135 000 J		
	$135\ 000\ \text{J}\/\ 14.7\ \text{J}\ =\ 9184\ \text{stretches}$		
	9184 / 15 stretches per minute = 612 minutes (36720 s Or 10.2		
	h)		
4(d)	smaller extension Or will not stretch as much	(1)	
	less work with reference to either same force applied Or to work		
	done being force x extension	(1)	2
	(Do not accept displacement or distance in place of extension for MP1or MP2)		
	Total for question		11

Question Number	Answer	Mark
5	See: $W = mg OR$ newton unit of force OR newton unit of weight (1) $W = 0.98 N \text{ or } W = 0.1 \text{ (kg) } x 9.81 \text{ (N kg}^{-1}) = 1 N$ (1)	
	See: $W = Fs OR$ gpe = Wh OR gpe = mgh OR joule unit of energy (1) Gpe = 0.98 J (1)	
	See: $P = W/t$ or variation OR watt unit of power (1) P = 0.98 W (1)	6
	Total for question	6

Question	Answer		Mark
Number			
6 (a)	Line not straight OR gradient not constant	(1)	
	Force not proportional to extension OR to obey Hooke's Law, force should		
	be proportional to extension	(1)	2
6 (b)	Use of area under graph	(1)	
	Work done = 2.5 J	(1)	2
	Example of calculation		
	$0.5 \ge 15 \ge 0.33 = 2.48 \text{ J}$		
	OR 1255 squares $\times 2 \times 10^{-3}$ J = 2.51 J		
6 (c)	Elastic (tries to) return to a smaller/original length	(1)	
	(So) will be in <u>tension</u> OR applies <u>force /pull</u>	(1)	2
6 (d)	Work done stretching the elastic greater		
	OR area under stretching>area under releasing		
	OR the area between the two lines represents the energy	(1)	
	(So) energy must be dissipated (in process) OR energy transferred as heat		
	OR energy transferred to internal energy	(1)	2
	Total for question		8